

1. Foundations of C++ Programming &

Algorithm Basics

• Introduction to DSA:

o Importance of data structures and

algorithms in software development

o Overview of problem-solving techniques

and algorithmic thinking

• Setting Up Environment: IDE (Visual Studio,

Code::Blocks), GCC compiler basics

• C++ Basics for DSA:

o Syntax, variables, data types (int, float,

char, bool, string)

o Constants, literals, and type conversions

o Operators: arithmetic, relational, logical,

bitwise

• Control Flow:

o Conditional statements (if, if-else, nested if,

switch-case)

o Loops: for, while, do-while (nested loops

and loop control statements: break,

continue)

• Functions and Recursion:

o Function declaration, definition, call,

parameter passing (by value, by reference,

pointers)

o Function overloading, inline functions,

default arguments

o Recursion fundamentals: base case,

recursive case, tail recursion, examples

(factorial, Fibonacci)

o Recursive backtracking introduction

• Arrays:

o Declaration, initialization, multi-dimensional

arrays

o Array traversal and manipulation (insertion,

deletion)

o Passing arrays to functions

• Time Complexity Basics:

o Introduction to algorithm efficiency

o Understanding Big O notation through

simple examples

2: Pointers, Dynamic Memory & Linear Data

Structures

• Pointers in Depth:

o Pointer declaration, initialization,

dereferencing

o Pointer arithmetic and arrays

o Pointer to pointer, pointers with functions

(pass by pointer)

• Dynamic Memory Management:

o new and delete operators

o Dynamic arrays, memory leaks, and best

practices

• Strings and String Handling in C++:

o C-style strings vs. std::string

o Common string operations and functions

• Structures and typedef:

o Defining and using structs

o Nested structures and pointers to

structures

• Linked Lists:

o Concept, advantages over arrays

o Singly Linked List: node structure,

insertion (beginning, end, middle),

deletion, traversal, searching

THE GEEK INSTITUTE

OF CYBER SECURITY

(Building Futures Through Digital Knowledge and Innovation)

Phone: +91 8882618533

Email: info@geekinstitute.org

Website: www.geekinstitute.org

Regd. By: E-Max India

Centre Code: EMAX/EK80606

(Recognized By Govt. Of India)

Data Structures and Algorithms (DSA) in C++ (06 Months)

Syllabus

o Doubly Linked List: node structure,

bidirectional traversal, insertion, deletion

o Circular Linked List: implementation and

use cases

o Memory management in linked lists

• Stack Data Structure:

o Concept and real-world use cases

o Stack implementation using arrays and

linked lists

o Stack operations: push, pop, peek,

isEmpty

o Applications: expression evaluation (infix,

postfix, prefix), balanced parentheses

checking

• Queue Data Structure:

o Concept and types of queues (simple

queue, circular queue, priority queue,

deque)

o Implementation using arrays and linked

lists

o Queue operations: enqueue, dequeue,

front, rear

o Real-world examples and applications

3: Trees - Theory, Implementation &

Traversal Techniques

• Tree Basics:

o Tree terminology: nodes, edges, root,

leaves, height, depth, degree

o Types of trees: general trees, binary trees

• Binary Trees:

o Node structure and properties

o Recursive and iterative tree traversals:

inorder, preorder, postorder

o Level order traversal using queue (Breadth-

First Search on trees)

• Binary Search Trees (BST):

o BST property and operations: insertion,

deletion (cases: leaf, one child, two

children), searching

o Finding minimum, maximum, successor,

predecessor

o BST validation and usage

• Balanced Trees (Conceptual):

o Introduction to AVL trees: rotations (left,

right, left-right, right-left)

o Importance of balance factor

• Heaps:

o Definition and types: Min-Heap, Max-Heap

o Heap property, array representation

o Heap operations: insertion, deletion,

heapify

o Applications: priority queues, heap sort

overview

• Trie (Prefix Tree):

o Trie data structure and applications

(autocomplete, spell checking)

o Implementation basics

• Memory and Efficiency Considerations in Trees

4: Sorting, Searching, and Algorithm

Analysis

• Sorting Algorithms (Detailed Implementation &

Analysis):

o Bubble Sort: optimization and time

complexity

o Selection Sort and Insertion Sort: in-place

sorting and stability

o Merge Sort: divide and conquer strategy,

recursive implementation, time & space

complexity

o Quick Sort: partitioning schemes (Lomuto,

Hoare), average vs worst-case complexity,

tail recursion

o Heap Sort: building heap, sorting process

o Comparison of sorting algorithms (when to

use what)

• Searching Algorithms:

o Linear search: implementation and use

cases

o Binary search: iterative and recursive

approaches, prerequisites, applications

• Algorithm Complexity and Analysis:

o Time complexity (Big O, Big Theta, Big

Omega)

o Space complexity

o Best, average, and worst-case analysis

o Amortized analysis basics

• Introduction to Algorithm Design Techniques:

o Divide and Conquer

o Greedy approach (intro)

o Dynamic Programming (intro)

5: Graph Theory and Hashing Techniques

• Graph Fundamentals:

o Definitions: graph terminology (vertex,

edge, degree, weighted/unweighted,

directed/undirected)

o Representations: adjacency matrix,

adjacency list, edge list

o Graph traversal: DFS and BFS detailed

implementation (recursive and iterative)

• Applications of Graph Traversals:

o Connected components

o Cycle detection in directed and undirected

graphs

• Minimum Spanning Tree (MST) (Theory and

Algorithm Concepts):

o Prim’s algorithm

o Kruskal’s algorithm

• Shortest Path Algorithms (Overview):

o Dijkstra’s algorithm (working principle and

implementation)

o Bellman-Ford algorithm (conceptual)

• Hashing:

o Hash functions: properties and examples

o Collision handling techniques: chaining,

open addressing (linear probing, quadratic

probing, double hashing)

o Design and implementation of a hash table

in C++

o Applications of hashing

6: Advanced Algorithmic Techniques and

Practical Project

• Dynamic Programming (DP):

• Key concepts: overlapping subproblems, optimal

substructure

• Memoization vs tabulation

• Classic problems:

o Fibonacci sequence

o 0/1 Knapsack problem

o Coin change problem

o Longest Common Subsequence (LCS)

• Greedy Algorithms:

• Understanding greedy choice property and optimal

substructure

• Problem-solving with greedy algorithms:

o Activity selection

o Huffman coding (concept and

implementation)

• Backtracking Algorithms:

o Concept and problem-solving approach

o Classic problems: N-Queens, Sudoku

Solver, Subset Sum

• Complexity Classes and Theory (Overview):

o Introduction to P, NP, and NP-Complete

problems

o Importance and impact on algorithm design

• Final Project:

o Students design and implement a complete

software project that integrates multiple

data structures and algorithms

o Real-world problem solving (e.g., contact

management system, basic search engine,

simple game with algorithmic logic)

o Code optimization and documentation

o Project presentation, peer review

Address : 376 , Rao Fateh Singh Marg , Kapashera New Delhi - 110097

