

1: Introduction to Sass & Modern CSS Workflows
✓ Overview of CSS Preprocessing and the need for

Sass
✓ Sass architecture in large-scale projects
✓ Differences between Sass (indented syntax) and

SCSS (CSS-like syntax)
✓ Real-world use cases: maintainable design

systems, component libraries
✓ Setup using Dart Sass (recommended compiler)
✓ Project structure: base/, layout/, components/,

themes/, utils/, vendors/

2: Variables & Dynamic Styling

✓ Defining variables for colors, spacing,
breakpoints, typography

✓ Scoped variables and the !default flag
✓ Creating dark/light theme systems using variable

maps
✓ Global design tokens architecture using @use

with !default strategy

3: Nesting Rules for Scalability

✓ Logical and semantic nesting techniques
✓ Avoiding over-nesting: best practices (max 3

levels)
✓ Parent selector (&) usage: states, pseudo-

classes, modifiers
✓ Combining nesting with BEM (Block Element

Modifier) methodology
✓ Nesting with media queries, feature queries, and

support rules

4: Modularization with Partials, @use, and @forward
✓ Creating reusable partials and loading them via

@use
✓ Using @forward to expose partials as public APIs
✓ Building a scalable design system using module

hierarchy
✓ Overriding variables safely with with clause
✓ Namespacing and aliasing modules

5: Mixins & Reusability Patterns

✓ Defining dynamic, parameterized mixins
✓ Variable arguments (...args) and default fallbacks
✓ Creating powerful utility mixins: clearfix,

responsive spacing, media breakpoints

✓ Mixin composition with @content block injection
✓ Difference between mixins and functions in code

reuse
6: Inheritance and Code Sharing with @extend

✓ Understanding selector inheritance via @extend
✓ Limiting specificity and duplication issues
✓ Abstract placeholders using %placeholder

selectors
✓ When to prefer @extend over mixins—and when

not to

7: Writing Custom Functions with @function

✓ Returning computed values dynamically
✓ Creating utility functions: px to rem converter,

color contrast calculators
✓ Best practices: validation, performance, and

naming conventions
✓ Function composition: nesting one function

within another

8: Advanced Interpolation Techniques

✓ Dynamic class names, property names, and
values using #{}

✓ Combining interpolation with maps and lists
✓ Conditional interpolation for theme-specific

builds

9: Built-in Color Functions & Design Tokens

✓ Advanced color manipulation with:
o adjust-hue(), saturate(), desaturate()
o mix(), darken(), lighten(), transparentize()

✓ Creating accessible color systems dynamically
✓ Using color functions in theme generators

10: Advanced Arithmetic & Operators

✓ Logical operators: ==, !=, >, <, >=, <=, and, or, not
✓ Arithmetic operators for spacing and layout logic
✓ Real-world use cases: grid systems, font scaling,

and spacing strategies

11: Core Built-in Functions

✓ Number Functions
o abs(), ceil(), floor(), round()
o max(), min(), comparable()
o percentage(), random(), unit(), unitless()

THE GEEK INSTITUTE
OF CYBER SECURITY

(Building Futures Through Digital Knowledge and Innovation)

Phone: +91 8882618533
Email: info@geekinstitute.org
Website: www.geekinstitute.org

Syntactically Awesome Style Sheets (Sass) (01 Month)

Syllabus

Regd. By: E-Max India
Centre Code: EMAX/EK80606
(Recognized By Govt. Of India)

✓ String Functions
o quote(), unquote()
o str-index(), str-insert()
o str-length(), str-slice()
o to-upper-case(), to-lower-case()
o unique-id() – ideal for dynamic animations

✓ List Functions
o length(), nth(), set-nth()
o join(), append(), index()
o list-separator(), is-bracketed()

✓ Selector Functions
o selector-nest(), selector-append(), selector-

replace()
o is-superselector(), simple-selector(),

selector-extend()
✓ Map Functions

o map-get(), map-set(), map-merge()
o map-remove(), map-keys(), map-values()
o map-has-key()

✓ Introspection Functions
o variable-exists(), global-variable-exists()
o mixin-exists(), function-exists()
o type-of(), inspect()

12: Control Flow & Programmatic Logic

✓ @if / @else
o Writing logic-based style conditions
o Complex use cases: accessibility styles, RTL

support
✓ @for Directive

o Looping through index ranges
o Creating utility spacing or grid classes

✓ @each Directive
o Looping over maps and lists
o Dynamic theming and modular class

creation
✓ @while Directive

o Recursive logic and custom framework-
like behavior

o Caution with infinite loops

13: Layout Helpers & Responsive Design

✓ Responsive mixins using $breakpoints maps
✓ Building container, row, and column helpers
✓ Mobile-first media query architecture
✓ Fluid typography and spacing with calc() and

clamp() integration

14: Media Queries and the @at-root Directive

✓ Scoping and structuring nested media queries
✓ Avoiding specificity issues using @at-root
✓ Creating modular media query systems inside

mixins
✓ Integration with design tokens for adaptive UIs

15: Final Projects and Professional Integration
✓ SCSS Component Library: Create a reusable

and scalable UI toolkit
✓ Dark/Light Theme Switcher using maps,

functions, and interpolation
✓ Responsive Grid System powered by mixins and

loops
✓ Sass-based Design System for a web

application
✓ Integration with React/Vue projects (Sass

Modules)
✓ Git versioning, branch-based development, and

SCSS file management

Bonus: Performance Optimization & Best Practices

• Output styles: nested, compressed, expanded

• Reducing compiled file size and unused CSS

• Naming conventions: BEM, SMACSS, or Atomic
design

• Maintainable architecture using 7-1 pattern

• Migrating legacy @import projects to @use

Address : 376 , Rao Fateh Singh Marg , Kapashera New Delhi - 110097

