

01: Introduction to x86_64 Architecture and Assembly

✓ Evolution from x86 to x86_64

✓ Instruction sets and CPU architecture overview

✓ Registers: general-purpose, special-purpose,
SIMD

✓ Binary, hex, little endian, memory addressing

✓ Setting up the environment: Linux, NASM, GCC,
EDB, Ghidra, GDB, Radare2

02: Assembly Language Basics and NASM Syntax

✓ Writing your first NASM program

✓ Sections: .data, .bss, .text

✓ Data definitions: db, dw, dd, dq

✓ Labels, comments, and code structure

✓ Compiling and linking with NASM and LD/GCC

✓ Manual disassembly with ndisasm and objdump

03: Registers, Memory, and Arithmetic

✓ General-purpose registers: rax, rbx, rcx, etc.

✓ Stack and base pointers: rsp, rbp

✓ Addressing modes: immediate, register, direct,
indirect

✓ Arithmetic operations: add, sub, mul, div

✓ Logical and bitwise operations: and, or, xor, shl,
shr

04: Control Flow and Conditional Logic

✓ Conditional and unconditional jumps: jmp, je,
jne, etc.

✓ Flags and cmp, test instructions

✓ Implementing if, else, and switch logic in
assembly

✓ Looping constructs: loop, while, for logic

✓ Writing clean control flows using labels and
blocks

05: The Stack, Procedures, and Calling Conventions

✓ Stack operations: push, pop, call, ret

✓ System V AMD64 calling convention

✓ Function arguments in registers: rdi, rsi, rdx, etc.

✓ Stack frames and local variables

✓ Recursive functions in assembly

✓ Leaf vs non-leaf functions

06: Linux System Calls in Assembly

✓ Introduction to the syscall interface (syscall
instruction)

✓ Using rax to define syscall numbers

✓ Parameters in rdi, rsi, rdx, etc.

✓ File operations: open, read, write, close

✓ Memory: mmap, brk, munmap

✓ Exit, fork, exec, and basic process management

07: Debugging with GDB (GNU Debugger)

✓ Launching programs in GDB

✓ Setting breakpoints, watchpoints, stepping
through code

✓ Inspecting memory, registers, and stack

✓ Using GDB for analyzing syscall behavior

✓ Scripting GDB with init files and Python
extensions

✓ Debugging stripped binaries

08: Disassembly and Static Analysis with Ghidra

✓ Installing and configuring Ghidra
✓ Importing binaries and analyzing control flow
✓ Understanding decompiler output and matching

assembly to C
✓ Cross-referencing functions, strings, and global

data
✓ Function signatures, symbol renaming, and

scripting with Java/Python
✓ Using Ghidra for patching and function

reimplementation

THE GEEK INSTITUTE
OF CYBER SECURITY

(Building Futures Through Digital Knowledge and Innovation)

Phone: +91 8882618533
Email: info@geekinstitute.org
Website: www.geekinstitute.org

Regd. By: E-Max India
Centre Code: EMAX/EK80606
(Recognized By Govt. Of India)

x86_64 Assembly Language Programming with Debugging and Reverse
Engineering Tools (01 Months)

Syllabus

mailto:info@geekinstitute.org

09: Binary Analysis with Radare2 and EDB

✓ Introduction to Radare2 architecture (r2,
r2ghidra, cutter)

✓ Disassembling, analyzing functions, and
renaming in Radare2

✓ Graph view, strings, and syscall tracing

✓ Editing assembly in Radare2

✓ Using EDB (Evan's Debugger) for GUI-based
dynamic analysis

✓ Memory, register, and stack inspection via GUI

10: Memory Layout and Buffer Exploits

✓ ELF file format and memory segments

✓ Stack layout: arguments, return address, base
pointer

✓ Detecting and understanding stack overflows

✓ Buffer overflows and off-by-one vulnerabilities

✓ Return-to-libc overview

✓ Writing safe functions in assembly

11: Shellcode Development and Injection

✓ Understanding position-independent code (PIC)

✓ Creating custom shellcode from scratch

✓ Avoiding null bytes and bad characters

✓ Encoding and decoding shellcode

✓ Shellcode execution in C wrappers

✓ Writing egghunter and polymorphic shellcode

12: Reverse Engineering Real-world Binaries

✓ Reconstructing logic from stripped executables

✓ Reversing compiled C programs

✓ Identifying obfuscation techniques

✓ Binary patching and modification with Ghidra or
Radare2

✓ Rebuilding C code from disassembled logic

✓ Case study: reverse engineering a login cracker

Capstone Projects and Hands-On Practice

✓ Project 1: Implement a calculator using only
syscalls

✓ Project 2: Reverse engineer and modify a binary
to bypass authentication

✓ Project 3: Create your own shellcode and inject
into a vulnerable program

✓ Project 4: Write a file copy routine using x86_64
Assembly

✓ Project 5: Use Ghidra and Radare2 to fully
reverse engineer a compiled C program

Address : 376 , Rao Fateh Singh Marg , Kapashera New Delhi - 110097

